10-Hydroxymajoroside, an Iridoid Glucoside from Plantago cornuti Gouan L.

Nedjalka Handjieva, Rilka Taskova, and Simeon Popov Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

Z. Naturforsch. 48c, 827-828 (1993); received April 22, 1992

Iridoids, Plantago cornuti

10-Hydroxymajoroside, a second representative of the rare majoroside type iridoid glucosides, along with the well known aucubin, has been isolated from *Plantago cornuti*.

Introduction

Recently we reported the isolation of iridoids from different *Plantago* species [1-4]. As a part of our continuing studies on *Plantago* plants, we report the isolation of a new iridoid glucoside, 10-hydroxymajoroside, as well as the known aucubin, from *Plantago cornuti* Gouan. The new iridoid is the second representative of the rare majoroside type iridoids. The iridoid composition of *P. cornuti* has not been investigated till now.

Results and Discussion

Separation of the methanol extract of *P. cornuti* by sequential charcoal treatment, vacuum liquid chromatography (VLC) and column chromatography on silica gel, yielded the new iridoid glucoside, 10-hydroxymajoroside (1), as well as aucubin (2). The latter compound was identified as aucubin by ¹H and ¹³C NMR spectra.

COOMe OH OH OCH₂ OGIc

1:
$$R=OH$$
 2

3: $R=H$

The molecular formula $C_{17}H_{24}O_{11}$ of 1 was determined by ¹³C, DEPT NMR analysis (Table II) and DCI/MS(NH₃) [5] (m/z 422 [M+NH₄]⁺). The absorption maximum at 235 nm in the UV spectrum showed the presence of an iridoid enol ether

Reprint requests to Dr. N. Handjieva. Verlag der Zeitschrift für Naturforschung, D-72072 Tübingen 0939–5075/93/1100–0827 \$01.30/0 system conjugated with a C-4 carbomethoxy group.

The ¹H and ¹³C NMR data of 1 (Tables I and II) were very similar to those of majoroside (3), an iridoid isolated previously from P. major [3], thus suggesting the same skeleton. The strong deshielding of H-1 and its appearance as a singlet due to the absence of the typical 1,9-coupling confirmed the unusual position of the double bond in the 8,9-position in the five membered ring. The main difference in the ¹H NMR of 1 were the presence of signals for two protons at δ 4.45 (1 H, d, $J_{10a,10b} = 14.1, 10a-H$ and 4.26 (1 H, $J_{10a,10b} = 14.1$, $J_{5,10} = 2.6$, H-10b) indicating a -CH₂OH group as well as the absence of the singlet at δ 1.85 for Me-10. The signal for H-7 was deshielded (1: δ 5.05; 3: δ 4.61). The long-range coupling of H-5 with H-3 (J=1.8 Hz) and H-10b (J=2.6 Hz), absence of coupling between H-7 at

Table I. ¹H NMR data of compounds 1 and 3.

Н	$1(D_2O)$	$3*(D_2O)$
1 3	6.40 <i>s</i> 7.45 <i>d</i> (1.8)	6.23 <i>s</i> 7.44 <i>d</i> (1.9)
5 6a 6b	3.76 m 1.83 m 2.46 dd (7.0/14.3)	3.75 <i>m</i> 1.85 <i>m</i> 2.40 <i>dd</i> (7.2/14.5)
7 10 a	5.05 <i>d</i> (7.0) 4.26 <i>dd</i> (2.6/14.1)	4.61 <i>brd</i> (7.1) 1.85 <i>d</i> (2.5)
10b OMe 1'	4.45 d (14.1) 3.76 s 4.89 d (8.2)	3.75 <i>s</i> 4.88 <i>d</i> (8.1)
2'	3.29 t (9.0)	3.29 t (9.1)
3' 4' 5'	3.36-3.56	3.53 m 3.45 t (9.5) 3.53 m
6' a 6' b	3.76 m 3.95 dd (1.5/11.9)	3.75 m 3.96 dd (2.0/12.3)

^{*} Ref. [3].

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Table II. ¹³C NMR spectral data of compounds 1 and 3.

С	1 (D ₂ O)	3* (D ₂ O)
1	93.80 d	94.56 d
3	153.85 d	153.98 d
4	115.26 s	115.60 s
4 5	38.08 d	37.72 d
6	42.11 t	41.92 t
7	78.72 d	82.54 d
8	143.88 s	142.75 s
9	137.59 s	134.07 s
10	58.24 t	13.64 q
11	172.48 s	172.42 s
OMe	54.66 q	54.62 q
1'	$101.19 \hat{d}$	$101.20 \hat{d}$
2'	75.44 d	75.53 d
3'	78.38 d	78.48 d
4'	72.33 d	72.42 d
5'	79.17 d	79.20 d
6'	63.48 t	63.58 t

^{*} Ref. [3].

 δ 5.05 and H-5 at δ 3.76 and strong coupling of H-5 with H-6b (J = 7.0 Hz) were proven by selective decoupling.

The 13 C NMR data and DEPT NMR analysis of **1**, compared with those of **3**, clearly confirmed the occurrence of a $-\text{CH}_2\text{OH}$ at C-8 (Table II). Instead of a signal at δ 13.64 q for Me-10, the presence of a signal at δ 58.24 t for C-10 was observed. The signal of C-7 (**1**: δ 78.72; **3**: δ 82.54) was shielded while that of C-9 (**1**: δ 137.59; **3**: δ 134.07) deshielded. Hence, **1** is 10-hydroxymajoroside.

Materials and Methods

DCI/MS (NH₃) were recorded with JEOL JMS D-300 (ion source temp. 130 °C). The ¹H and ¹³C NMR spectra were measured on a Bruker 250 MHz spectrometer: 250 MHz; 62.9 MHz. TSPA-*d*₄ int. standard. The normal and selective-decoupled proton spectra were measured with presaturation of solvent. ¹³C NMR spectra were obtained by use of DEPT sequence for multiplet selection. The chemical shifts are accurate within

 $\delta \pm 0.005$ (¹H) and ± 0.02 (¹³C), and the coupling constants within ± 0.3 Hz.

Plant material

Above ground parts of *Plantago cornuti* were collected in Tsarevo along the beach in June 1991 when plants were in flower. Voucher specimen SOM 151024 is deposited in the Herbarium of the Institute of Botany with Botanical garden, Bulgarian Academy of Sciences, Sofia.

Isolation

Dried above ground parts of *P. cornuti* (120 g) were exhaustively extracted with MeOH. The combined extract was evaporated *in vacuo* below 45 °C and fractionated with dichlorethane and water. The water layer was chromatographed on active charcoal (19 g) and eluted with H₂O. H₂O – MeOH (9:1), MeOH, MeOH – Me₂CO (1:1) and MeOH – Cl(CH₂)₂Cl (1:1). The MeOH fr (1.2 g) contained almost only 2. The last two frs (600 mg) after VLC on silica gel (36 g) and elution with Cl(CH₂)₂Cl with increasing MeOH content and further purification on a silica gel column (15 g) of fr 4 (148 mg) afforded frs 12–13 (17 mg) of pure 1 and frs 17–19 (12 mg) of pure 2.

10-Hydroxymajoroside (1)

Amorphous powder, $[\alpha]_D^{20} - 21.78^\circ$ (MeOH); UV $\lambda_{\max}^{\text{MeOH}}$ nm: 235; DCI/MS(NH₃): m/z (rel. int.) 422 [M+NH₄]⁺ (53), 404 [M+NH₄-18] (10), 242 [Agl] (28), 224 [Agl-18] (46), 207 [Agl-18-17] (78), 189 [Agl-2 × 18-17] (100). ¹H and ¹³C NMR data ara given in Table I and II.

Acknowledgements

The project has been completed with the financial support of the National Foundation of Scientific Research of Bulgaria unter contract No. X-45.

^[1] H. Saadi, N. Handjieva, S. Popov, and L. Evstatieva, Phytochemistry **29**, 3938 (1990).

^[2] N. Handjieva, H. Saadi, and L. Evstatieva, Z. Naturforsch. 46c, 963 (1991).

^[3] N. Handjieva, S. Spassov, G. Bodurova, H. Saadi, S. Popov, O. Pureb, and J. Zamjansan, Phytochemistry 30, 1317 (1991).

^[4] H. Saadi, N. Handjieva, A. Ivanova, and S. Popov, Z. Naturforsch. 46c, 1001 (1991).

^[5] P. Demirev, N. Handjieva, H. Saadi, S. Popov, O. Reshetova, and B. Rozynov, Org. Mass. Spectr. 26, 151 (1991).